

North Coast OSW Port & Coastal Infrastructure

9-28-20

Aaron Porter, PE

Shane Phillips, PE

Introduction

Study Purpose

Inform government, industry, and stakeholders

Topic

Exploring the existing capability and feasibility of infrastructure improvements needed to support offshore wind on California's North Coast

- Port
- Coastal

Mott MacDonald North Coast OSW Port & Coastal Infrastructure

Outline

Introduction/Background

Port Infrastructure Navigation Marine Terminal Costs & Schedule Summary

Cable Landfall

2

3

Port and Coastal Infrastructure Floating Offshore Wind

Port Infrastructure

Navigation Marine Terminals

Scope

Port and Coastal Infrastructure Assessment

- 1. Develop conceptual-level port infrastructure requirements for supporting small (~150 megawatts (MW),12+ units) and large (~1800MW, ~150 units) floating OSW installations.
- 2. Identify capabilities and gaps of the existing port infrastructure.
- 3. Recommendations for port infrastructure upgrades.
- 4. Opinions of planning-level construction cost estimates

Scope

Port and Coastal Infrastructure Assessment

- 1. Develop conceptual-level port infrastructure requirements for supporting small (~150 megawatts (MW),12+ units) and large (~1800MW, ~150 units) floating OSW installations.
- 2. Identify capabilities and gaps of the existing port infrastructure.
- 3. Recommendations for port infrastructure upgrades.
- 4. Opinions of planning-level construction cost estimates

Mott MacDonald North Coast OSW Port & Coastal Infrastructure September 28, 2020

Component Scale

Source: Josh Bauer, NREL

Mott MacDonald North Coast OSW Port & Coastal Infrastructure MARINE TRANSPORTATION SYSTEM DEPENDENT

Mott MacDonald North Coast OSW Port & Coastal Infrastructure MARINE TRANSPORTATION SYSTEM DEPENDENT

September 28, 2020

Mott MacDonald North Coast OSW Port & Coastal Infrastructure MARINE TRANSPORTATION SYSTEM DEPENDENT

September 28, 2020

West Coast Floating Offshore Wind Port Infrastructure

2016 Study

Assembly At Port

- Air Draft
- Water Depth
- Wave Climate
- Proximity

Offsite Fabrication

- Blades, turbines, etc.
- Substructure TBD

Marine Transport

- Overland connection type
- Common in Industry

Study Methodology

Level of Assessment

- Prefeasibility level
- Not a detailed evaluation

Methodology

- Site Inspection
- Data Compilation and Review
- Literature and Prototype Industry Review
- Stakeholder Engagement (Vessel Pilots, Harbor District, Developers)
- Conceptual Level Engineering Analysis
- Pre-Feasibility Level Facility Upgrade Schematics

Navigation

Humboldt Bay Port Infrastructure

Offshore Floating Wind Farm

ALL IMAGES SHOWN ARE FOR ILLUSTRATION PURPOSE ONLY

Navigation Facilities

Device Motion Clearance Seabed Variance

Mott MacDonald North Coast OSW Port & Coastal Infrastructure

Concept Example – Outer Channel Controlling Depth

8, 2020

Marine Terminal

Humboldt Bay Port Infrastructure

Offshore Floating Wind Farm

NOT TO SCALE Bar/Entrance Channel Installation / Component Delivery / O&M Yard Storage / Staging **Fabrication Facility** Substructure Fabrication / Float Off **m** • -----Wharf Inner Channel Assembly / Component Delivery / O&M **Component Delivery Staging Area** Multiple Devices Wet Storage Multiple Devices **Ballast Area**

ALL IMAGES SHOWN ARE FOR ILLUSTRATION PURPOSE ONLY

Existing Marine Terminals

Screening:

Upland Area \checkmark

- ✓ Navigation Impacts
- •

Meets primary criteria; upgrades may be needed.

Does not meet primary criteria, or major mitigation would be required.

Marine Terminal – Assembly

Example Assembly Terminal Layouts

Considerations

• Yard

- Sufficient space for either size project
- Area dependent on navigation constraints
- Ground improvements likely

Wharf

 Over-water coverage – minimize impacts on eelgrass beds

• Berth

- Dredging likely required for either size project
- Fabrication
 - Likely requires additional exclusive-use berths and yard area

Mott MacDonald North Coast OSW Port & Coastal Infrastructure

Structure Concepts

Existing Conditions at RMTI

Mott MacDonald North Coast OSW Port & Coastal Infrastructure

Fil Concept

Summary

Port Infrastructure Assessment

Existing Infrastructure

Navigation

Existing navigation channel can likely support floating offshore wind projects

Device size may be limited w/out channel modifications

Marine Terminal

Existing wharf and yard need upgrades

Creosote piles likely need to be removed

Upgrades

Navigation

Outer FNC: Installation throughput may depend on channel modifications

Inner FNC: Widening may be required depending on device geometry

Marine Terminal

Berth dredging likely required New high-capacity wharf required Yard ground improvement and grading required

Large repairs may occur at assembly berth, CTVs + SOVs require new facility

Operations

Seasonality: Seasonal installation is likely, components may be delivered year-round

Maintenance dredging: Timing adjustments to earlier in season likely beneficial and may be needed

O&M: Pacific winter wave climate – considerations for O&M crew access

Other Uses: The new marine terminal exceeds capacity and length needs for other industries.

Cost and Schedule

Capital Costs

Assembly

Small: \$50-110m

Large: \$150-300m

Fabrication

\$50-100m

<u>0&M</u>

Small: \$1-2 m

Large: \$6-10 m

Schedule

Marine Terminal Build-out Regulatory considerations In-water work window Small: ~4-6 years Large: ~5-7+ years

Mott MacDonald North Coast OSW Port & Coastal Infrastructure

Example Areas for Further Investigation

Port & Coastal Infrastructure

Maneuvering Analysis	Coastal Engineering Analysis	Stakeholder Outreach
Full Bridge Simulations	Port Planning and Logistics	Regulatory
Throughput	Wharf Elevation	Surveying
	Aids to Navigation	Geotechnical Investigation
	Resiliency Study	Ceoteennearmeestigation
	Siting of O&M Facility	
Mott MacDonald North Coast OSW		September 28, 2020

Cable Landfall

Cable Landfall

Mott MacDonald North Coast OSW Port & Coastal Infrastructure

Trenchless

Landfall likely feasible

- Can be one of the most complex elements
- Data collection and engineering to reduce risk
- Focus on HDD most common trenchless
- Utilities and truck access
- Marine support barge and vessels Additional study/engineering needed

Thank you

