Seabirds in 3D: a new framework for assessing collision vulnerability with floating offshore wind

di

H. T. HARVEY & ASSOCIATES Ecological Consultants

Presented by: Sharon Kramer and Stephanie Schneider of H. T. Harvey & Associates Eli Wallach and Arne Jacobson of the Schatz Energy Research Center

Agenda

- 1. Greeting and Introductions (5 min)
- 2. Overview of the Objectives and Approach (5 min)
- 3. 3D Seabird Model (20 min)
- 4. Power Generation Model (15 min)
- 5. Trade-offs Between Collision Vulnerability and Generation (15 min)
- 6. Data Gaps and Future Research Priorities (10 min)
- 7. Key Takeaways (5 min)
- 8. Panelists (10 min)
 - Garry George, Director of the Clean Energy Initiative for the National Audubon Society
 - David M. Pereksta, Avian Biologist at the Bureau of Ocean Energy Management
- 9. Questions and Answers (30 min)

Photo credit: Maia Cheli

Introductions – Project Team

17

Kaycee Chang David Stoms	Energy Research and Development Division	California Energy Commission		
Arne Jacobson	Director	Schotz Energy Decearch Conter		
Eli Wallach	Research Engineer	Cal Daly Humboldt		
Charles Chamberlin	Co-Director			
David Ainley	Senior Ecologist			
Sharon Kramer	Principal	UT Harvov & Acception		
Stephanie Schneider	Ecologist	n. I. harvey & Associates		
Scott Terrill	Vice President, Principal			
Glenn Ford	Principal Scientist	R. G. Ford Consulting Company		
Jarrad Santara	Research Fish Biologist, Division Fisheries and	NOAA's Southwest Fisheries		
	Ecosystem Oceanography Team	Science Center		

Acknowledgements

Project Sponsor

Special thanks go to: Sophie Bernstein, Ryan Terrill, Sadie Trush, Jerome Qiriazi, Maia Cheli, Carisse Geronimo

Technical Advisory Committee Members (current and past)

Dan Barton	Dept. of Wildlife Chair and Associate Professor	Cal Poly Humboldt
Garry George	Director, Clean Energy Initiative	National Audubon Society
Mike Optis	Researcher	National Renewable Energy Laboratory
David Pereksta	Avian Biologist	Bureau of Ocean Energy Management
Chris Potter	Senior Environmental Specialist	CA Department of Fish and Wildlife
Kaus Raghukumar	Oceanographer	Integral Consulting Inc.
Mark Severy	Research Engineer	Pacific Northwest National Laboratory
Tyler Studds	Development – Offshore Wind	Ocean Winds
Yi-Hui Wang	Offshore Energy Postdoc	California Polytechnic State University
Brita Woeck	Lead Environmental & Permitting Specialist	Ørsted

Key Messages

Seabirds and Offshore Wind

- Seabird community differs in nearshore versus offshore waters
- Only some seabird species fly high enough to enter the rotor swept zone of wind turbines
- Number of birds considered vulnerable to collision is much greater than the expected collision rates

Analysis of Tradeoffs

- Areas off Cape Mendocino and Crescent City are especially attractive for power generation (without considering seabird vulnerability)
- Once analysis for the full suite of birds is final, assessment of tradeoffs will be useful for largescale planning

Overview of the 3D Seabird Project

April 27, 2023 | schatzcenter.org

10

Overview - The Issue

Offshore wind facilities pose risk to seabirds

- Displacement versus collision
- Existing 2D seabird models can identify hotspots of seabird activity
- Estimating collision vulnerability requires better understanding of 3D use
 - 2D models do not delineate presence of seabirds at different flight heights
- Flight height patterns vary by species and wind speed

Goals and Objectives

This project set out to:

- Develop a three-dimensional seabird distribution model for California
- Evaluate the relative vulnerability of seabirds in offshore wind development regions for different locations
- Compare tradeoffs between seabird vulnerability and power generation

Project Overview

DEOL and CADEMO Project Areas: https://www.slc.ca.gov/renewable-energy/offshore-wind-applications/ Crescent City (POET) Location: from Bill Henry via POET

Project Overview – 3D Seabird Model

- Regression approach Estimates density of seabirds above 10 m
- Combines regressions predicting flight height and regressions predicting abundance in 2D
- Uses observational data from aircraft and boats spanning the last 40 years
- Uses long term oceanographic conditions
- Uses modeled wind speed data (NREL CA-20 & Northwest Pacific; Windtoolkit databases)

Project Overview – Power Generation Model

Data Input

- Simulations modeling approach
- Simulates a variety of wind farm scenarios
- Uses modeled wind speed data (NREL CA-20 & Northwest Pacific; Windtoolkit databases)
- Based on NREL 12 & 15 MW reference turbines
- Uses an Eddy Viscosity model as implemented by SAM (System Advisor Model) to estimate wake losses

3D Seabird Model

April 27, 2023 | schatzcenter.org

(I)

Offshore Wind and Seabirds in the Pacific

Offshore Wind and Seabirds in the Pacific

Offshore Wind and Seabirds in the Pacific

Unlike areas developed for Offshore Wind in Europe and eastern USA, the California Current avifauna contains many dynamic soaring species (albatross, petrels, shearwaters)

What is 3D Vulnerability?

3D Vulnerability Framework

3D Vulnerability Framework

Seabird Observations

ELE Kilometers

Seabirds in 2D: Patterns Observed

All Birds in Vulnerability Model

Nearshore versus offshore patterns

• Abundance maximized in coastal areas

Nearshore

- Many species nest in California
- All nesting colonies except for the Farallon Islands are within 5 miles (8 km) of the coastline

Offshore

- Many species do not nest in California
- Long distance migrants in search of food outside of the nesting period

Changes through time – "seabird seasons"

Oceanographic Covariates

Seabirds in 3D: Flight Height

Extensive study on flight behavior

- Spanned much of the Pacific Basin
- 87 cruises from 1976-2006
- 131,354 sightings; 271 species
- Full spectrum of wind speeds
- Tailored to represent seabirds
 present in the California Current

Seabird flight height data were binned

- Categories: On water, 0-3 m, 3-10 m, >10 m
- Approach: Logistic regression
- Relevance to Rotor Swept Zone (RSZ): 10 m is a conservative proxy for the lower extent of the RSZ
- **Outcome:** Probability of birds being above 10 meters across full spectrum of winds (0 to 30 m/s)

Seabirds in 3D: Windscape

Seabirds in 3D: Wind Speed and Flight Height

1.00	Small albatrosses	Fulmars	Large gadfly petrels	Small gadfly petrels	Surface-feeding shearwater	Larger diving shearwater	Smaller diving shearwater
0.75							
0.00							
1.00	Storm-petrels	Pelicans	Boobies	Phalaropes	Skuas	Large gulls	Medium gulls
).75							
.25							
.00 l	Small quills	Terns	Cormorante		Medium alcids	Small alcids	Loops grebes ducks
.00	Sillai guis	Terns	Comorants		Wedium aicids	Siliali aicius	Loons, grebes, ducks
.75							
.25							
0.00							

Wind Speed (m/s)

Seabirds in 3D: Wind Speed and Flight Height

Wind Speed (m/s)

Seabirds in 3D: Species Included

Small albatrosses	Fulmars	Large gadfly petrels	Small gadfly petrels	Surface-feeding shearwater	Larger diving shearwater	Smaller diving shearwater
Storm-petrels	Pelicans	Boobies	Phalaropes	Skuas	Large gulls	Medium gulls
+ + +			*~~*			
Small gulls	Terns	Cormorants	Large alcids	Medium alcids	Small alcids	Loons, grebes, ducks
					TXX	

NOTE: Bird images are not to scale

Seabirds in 3D: Ashy Storm-petrel

Seabirds in 3D: South Polar Skua

Seabirds in 3D: Brown Pelican

Power Generation Model

April 27 2023 | schatzcenter.org

Locations

- BOEM Wind Energy Areas (WEAs): Humboldt, Morro Bay, & Diablo Canyon (former call area)
- Notional Areas for Potential Wind Development: Crescent City (POET) & Cape Mendocino
- Proposed Wind Demonstration Project Areas in California State Waters: Vandenberg Air Force Pilot Project & CADEMO Project
- Seabird Hot Spots: Delgada Canyon & Monterey Canyon System (OSW development unlikely)
- Full Coast Analysis considering a single turbine

Layout Criteria

- 7D X 10D Elliptical Spacing Requirement
- Mooring lines not to overlap
- Turbines and mooring anchors fall within WEA
- Layout criteria and how close developers envision placing these turbines has been changing
- These assumptions are likely conservative

Turbine Placements Complete

Turbine Size: 12 MW Sizing: 600MW

Turbine Size: 12 MW Sizing: Full-buildout Windfarm Size: 2,112 MW

Wind Farm-Power Generation Results

Generation Duration Curves

Full Coast Analysis

Results for a single 12 MW turbine in each of the 2x2km grid cells

- Estimated wind generation values for sites as deep as 1300 m
- Capacity factors are slightly higher than for actual windfarms as wake losses are not considered
- The generation potential is generally better further offshore
- Best wind resource is available offshore of Cape Mendocino and Southern Oregon

Tradeoffs Between Power Generation and Seabird Vulnerability

April 27 2023 | schatzcenter.org

Pareto Analysis - Introduction

Why Pareto Analysis

- Commonly used for multi-objective decision making
- Enables comparison of marginal benefit between alternatives
- Does not require assigning weights to each objective

Pareto Analysis Framing

- Typical to maximize or minimize both objectives
- The metrics used are (i) inverse annual energy generation and (ii) seabird density above 10 m

Conceptual Example of Pareto Analysis

- Pareto Efficient alternatives shown with a black line – the Pareto front
- Alternatives to the left have lowest seabird vulnerability
- Alternatives to the bottom have the highest wind energy generation

Pareto Curve Results Low Flier

- Each point represents a grid cell with a single 12 MW turbine
- Dark (purple) areas on the map indicate alternatives near to the Pareto front
- Lighter (yellow) areas indicate alternatives far from the Pareto front
- Low propensity to fly above 10 m leads to near-zero estimates of bird density
- Greatest density above 10 m is equivalent to 1 bird per 500 km²

Pareto Curve Results High Flier

- This species is relatively uncommon leading to low bird densities above 10 m
- Greatest density above 10 m is equivalent to 1 bird in 4 km²

- Each point represents a grid cell with a single 12 MW turbine
- Areas which fall on the Pareto front are shown in black
- Alternative can be near to the Pareto front due to high generation or low bird densities

Pareto Curve Results High Flier

Highlighting center of each wind area and seabird hotspot

- Each point represents a grid cell with a single 12 MW turbine
- Areas which fall on the Pareto front are shown in black
- Alternative can be near to the Pareto front due to high generation or low bird densities

Pareto Curve Results Nearshore Species

- Density maximized nearshore, which is inversely related to wind generation due to stronger winds offshore
- Greatest density above 10 m is equivalent to 3 birds per km²

- Each point represents a grid cell with a single 12 MW turbine
- Areas which fall on the Pareto front are shown in black
- Alternative can be near to the Pareto front due to high generation or low bird densities

Pareto Curve Results Nearshore Species

Highlighting center of each wind area and seabird hotspot

- Each point represents a grid cell with a single 12 MW turbine
- Areas which fall on the Pareto front are shown in black
- Alternative can be near to the Pareto front due to high generation or low bird densities

Pareto Curve Results Nearshore Species

- Zoom in on the 25% of alternatives nearest Pareto front
- Grouped and colored to show
 which metric is favored

Balanced Objective Weights

Pareto Analysis – Zoom Out

The same graphics but at a fixed scale to show relative bird densities

Brown Pelicans above 10 m denser than both Ashy Storm Petrel and South Polar Skua

Pareto Analysis – Next Steps

- Complete analysis for all 45 seabird species
- Carry out Pareto analysis of seabirds in aggregate (sum)
- Carry out Pareto analysis of special status seabirds

Data Gaps and Future Research Priorities

April 27, 2023 | schatzcenter.org

Data Gaps

Modeling challenges

- The Monterey Submarine Canyon in Monterey Bay proved challenging
 - Interesting mix of nearshore and offshore characteristics
- Ongoing and future changes to marine environment or species abundance are not explicitly included
- Migratory movements are not necessarily represented by at-sea survey transect data

Historical at-sea seabird observations limited by capacity of human observers

- Restricted to periods of relatively suitable weather
- Restricted to times with adequate light (i.e., daytime)
- Limited duration (i.e., snapshots in time)
- Challenging to detect and estimate flight height as bird height above sea level increases

This study does not estimate collision rates for future wind facilities

• Potential exposure and vulnerability intended to inform tradeoffs in large-scale siting decisions

Future Research Priorities

Future Research Priorities

Integrated, Real-Time, Multi-Scale System for Monitoring Seabird Interactions with Floating Offshore Wind Technologies

 Develop and test technology capable of gathering data needed to generate collision risk models

Key Takeaways for Today's Meeting

April 27, 2023 | schatzcenter.org

Key Takeaways

Seabirds and Offshore Wind

- Seabird community differs in nearshore versus offshore waters
- Only some seabird species fly high enough to enter the rotor swept zone of wind turbines
- Number of birds considered vulnerable to collision is much greater than the expected collision rates

Analysis of Tradeoffs

- Areas off Cape Mendocino and Crescent City are especially attractive for power generation (without considering seabird vulnerability)
- Once analysis for the full suite of birds is final, assessment of tradeoffs will be useful for largescale planning

Panelists Discussion

Garry George, Director of the Clean Energy Initiative for the National Audubon Society David M. Pereksta, Avian Biologist at the Bureau of Ocean Energy Management

Question and Answer

If you're interested in receiving updates on our newly released reports and upcoming events, please email us at windstudies@schatzcenter.org

April 27, 2023 | schatzcenter.org