# California Floating Offshore Wind Professional Labor Assessment

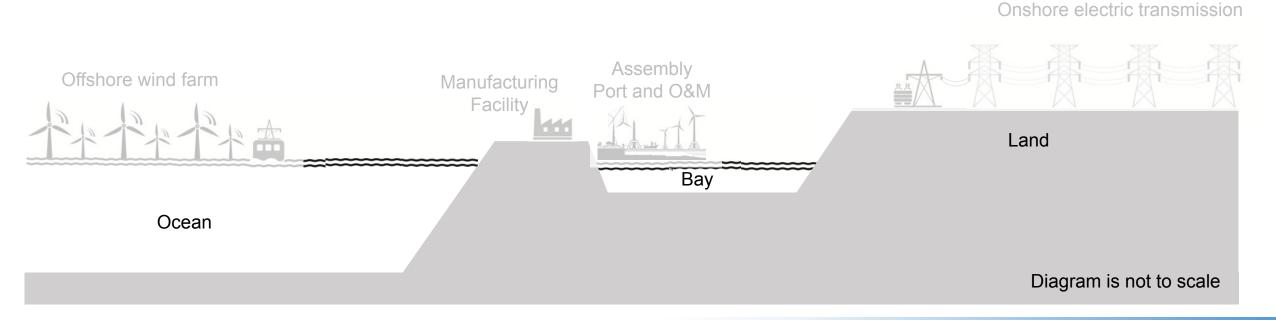




**CAL POLY HUMBOLDT** 








### Overview

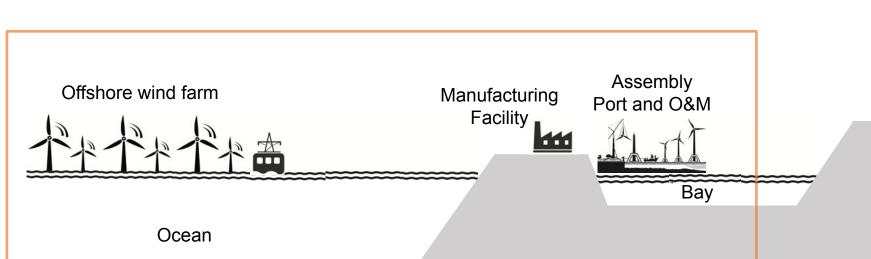


Offshore wind development involves four main types of infrastructure:

- (1) offshore wind farms, (2) ports (import/export, assembly, O&M),
- (3) electric transmission (and conversion), (4) component supply chains.






# Report Overview



### Objective: Assess Professional Labor Demand in CA Offshore Wind

- Evaluate existing workforce analyses and models
- Assess professional labor demand across the FOSW industry...
- And the development of port and transmission infrastructure
- Identify educational pathways to employment through Cal Poly Humboldt





Onshore electric transmission



Land

Diagram is not to scale

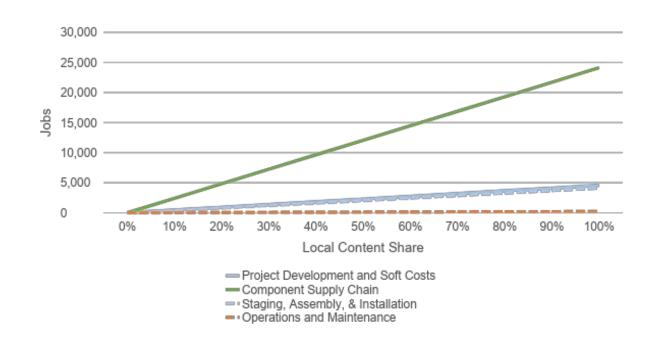


# Evaluation of Workforce Analyses



- AB 525 Offshore Wind Strategic Plan Workforce Development studies showed major variation across workforce demand by 2030; 2,375 – 8,280 Jobs (~6,000 job range)
- Major factors driving difference:
  - Project Scale/Timeline pre-dating CA current FOSW Energy Targets of 3-5 GW by 2030, and 25 GW by 2045
  - 2. Level/type of In-state Supply Chain Participation
- AB 525 Workforce Readiness Plan (2023) 2-5 GW by 2030 High Supply Chain Participation 3,177 jobs in 2030

### **Estimated CA Floating Offshore Wind Jobs in 2030**


| Source/Model                 | Project<br>Scale/Timeline      | Supply Chain<br>Participation               | Supply Chain<br>Jobs | Construction<br>Jobs | Operations &<br>Maintenance<br>Jobs | Total Jobs    |
|------------------------------|--------------------------------|---------------------------------------------|----------------------|----------------------|-------------------------------------|---------------|
| American Jobs Project (2019) | 18 GW by 2045                  | N/A                                         | 2,100                | 350                  | 1,200                               | 3,650         |
| NREL (2016)                  | 16 GW by 2050                  | 25% Nacelles,<br>50% Blades, 100%<br>Towers | 5,490                | 1,130                | 1,660                               | 8,280         |
| Guidehouse (2022)            | 3 GW by 2030, 20<br>GW by 2050 | 50% blades                                  | 1,936                | 125                  | 314                                 | 2,375         |
| Total Range                  |                                |                                             | 1,936 - 5,490        | 125 - 1,130          | 314 - 1,660                         | 2,375 - 8,280 |



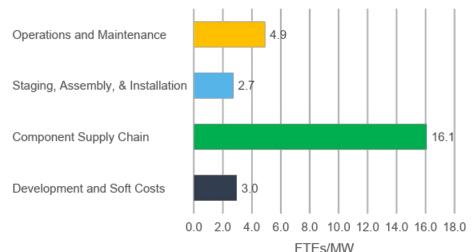
# NREL FOSW JEDI Model – Sensitivity Analysis



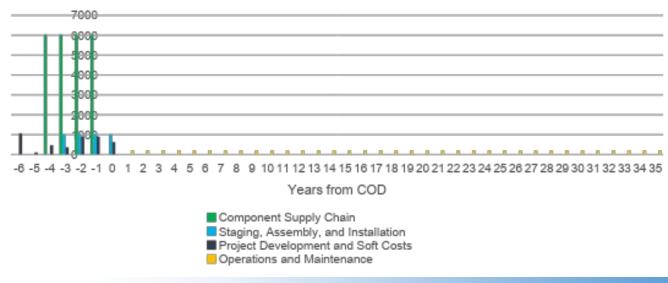
- NREL Job and Economic Impact (JEDI)
   Model estimates economic output of energy infrastructure projects based on project inputs.
- Modeled for a 1.5 GW offshore wind power plant in the Humboldt WEA (100, 15 MW turbines)
- Job output expressed in FTEs (Full Time Equivalents) - One FTE represents a full-time job for one year (2,080 hours)
- Cost of the project is distributed across expenditures in four OSW Activity Areas.
- Local Content Share Portion of expenditures that occur in the geographic area of focus (CA).






# NREL FOSW JEDI Model – Sensitivity Analysis




#### Component supply chain activities

- 60% of total jobs 16 FTEs/Megawatt (MW)
  - 76% of these are associated with "material costs" (Tier 2-4 manufacturing).
- Staging, assembly, and installation
  - 10% of total jobs 2.7 FTEs/MW
    - 44% of these are associated with specialized vessel operations.
- Development and soft costs
  - 11% of total jobs 3 FTEs/MW
    - 31% of these are associated with onshore electrical interconnection
    - 7% associated with site assessment activities.
- Operations and maintenance (O&M)
  - 18% of total jobs 4.92 FTEs/MW
    - These jobs will occur throughout the operational life of a project.

#### FTEs/MW by Supply Area



#### Annual FTEs for Supply Areas by Years from Commercial Operations Date





# Modeled OSW Activity Areas



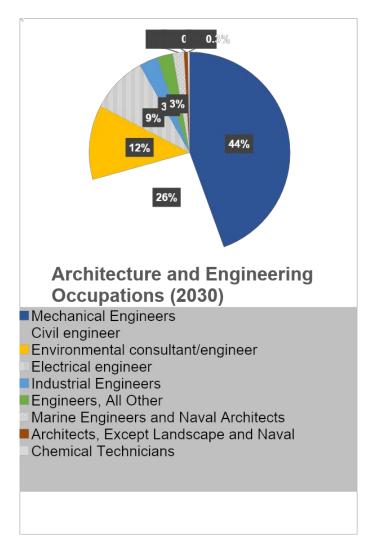
| Development and Soft                                                                                                                                                                                                                                                                                                                                                                                                  | Component Supply                                                                                                                                                                                                                                        | Staging, Assembly, &                                                                                                                                                                              | Operations and                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Costs                                                                                                                                                                                                                                                                                                                                                                                                                 | Chain                                                                                                                                                                                                                                                   | Installation                                                                                                                                                                                      | Maintenance                                                                                               |
| <ul> <li>Site Auction Price</li> <li>BOEM Review</li> <li>Construction Operations Plan</li> <li>Construction Operations Activities</li> <li>Design Install Plan</li> <li>Site Assessment Plan</li> <li>Site Assessment Activities</li> <li>Commissioning</li> <li>Construction Finance</li> <li>Construction Insurance</li> <li>Contingencies</li> <li>Decommissioning</li> <li>Electrical Interconnection</li> </ul> | <ul> <li>Material and labor costs for;</li> <li>Nacelle</li> <li>Blades</li> <li>Tower</li> <li>Mooring System</li> <li>Semisubmersible     Foundation</li> <li>Array Cable System</li> <li>Export Cable System</li> <li>Offshore Substation</li> </ul> | Costs associated with staging assembling and installing for;  • Semisubmersible Foundation • Mooring System • Turbine Components • Array Cable System • Export Cable System • Offshore Substation | <ul> <li>Offshore Technicians</li> <li>Operation Management<br/>and General<br/>Administration</li> </ul> |

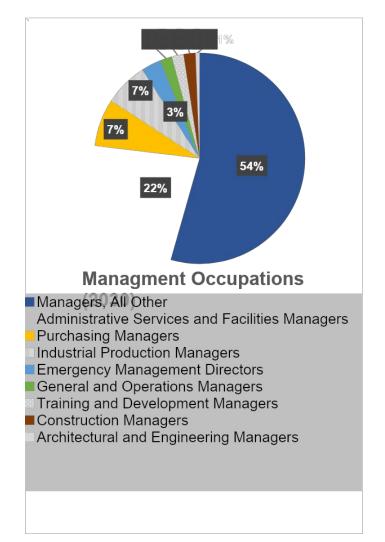


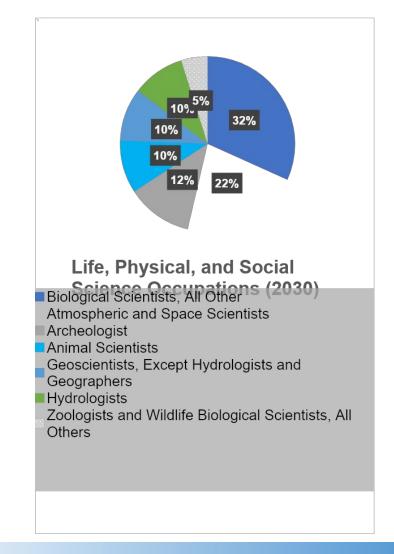
### Professional Labor Demand- FOSW



- **High-Investment Scenario** (Based on projections from the AB 525 Workforce Readiness Plan)
  - assumes significant domestic manufacturing of major components (nacelles, towers, and blades), resulting in higher overall job creation, with a larger share of professional employment – 41% of total jobs.
- Low-Investment Scenario (NREL JEDI model)
  - Assumes little to no domestic manufacturing of major components, leading to a decrease in professional employment to 37% of the workforce.


| Supply Area                                      | Low-Investment Scenario                                                                      | High-Investment Scenario <sup>1</sup>                                                                 |  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| Wind turbine supply                              | No local manufacturing of major components.                                                  | Nacelle assembly by 2030; one blade manufacturing facilities by 2030; towers manufacturing from 2030. |  |
| Balance of plant supply                          | Foundation assembly; no manufacturing or assembly of nacelles, cables, moorings nor anchors. | Local workforce for foundation assembly by 2030; nacelle manufacturing by 2030;                       |  |
| Proportion of Jobs Requiring a University Degree | 41%                                                                                          | 37%                                                                                                   |  |





## Professional Labor Demand - FOSW



49% 25% 12%









### Professional Labor Demand- FOSW



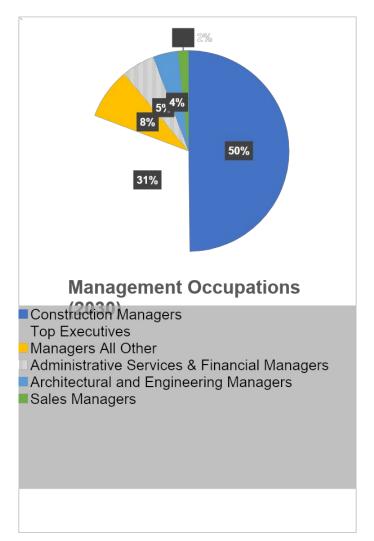
### **Professional Occupations in FOSW**

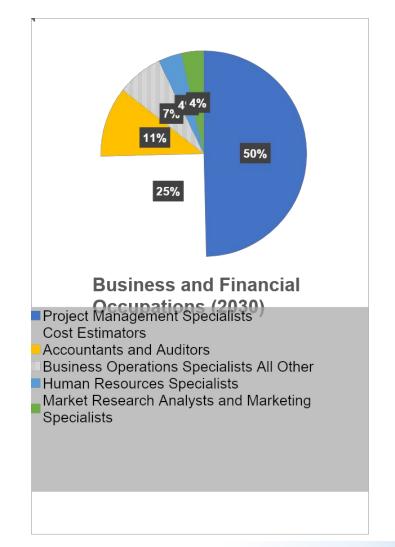
- Professional occupations will make up 41% to 37% of FOSW jobs in California, under two investment scenarios.
- Engineering occupations
  - 49.8% (High Investment) to 47.0% (Low Investment) of professional jobs in 2030.
    - Mechanical engineers: 44.5% 26.9% of engineering jobs
    - Civil engineers: 26.2% 41.0% of engineering jobs
- Life and physical sciences occupations
  - 12.2% 18.0% of professional jobs in 2030
- Management occupations
  - 24.5% 20.5% of professional jobs in 2030

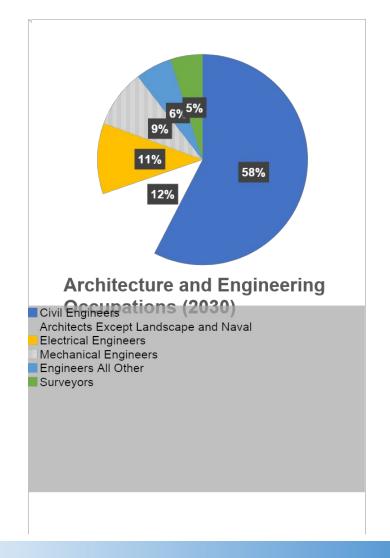
| soc     | Occupation                       | Number of jobs in 2030 <sup>1</sup> | Experience in<br>Related<br>Occupation <sup>2</sup> | Percent with<br>Advanced<br>Degree <sup>3</sup> |
|---------|----------------------------------|-------------------------------------|-----------------------------------------------------|-------------------------------------------------|
| 17-2141 | Mechanical Engineers             | 297                                 | None                                                | 25%                                             |
| 11-9199 | Managers, All Other              | 179                                 | Less than 5 years                                   | 21%                                             |
| 17-2051 | Civil Engineers                  | 175                                 | None                                                | 30%                                             |
| 17-2081 | Environmental Engineer           | 80                                  | None                                                | 43%                                             |
| 11-3012 | Administrative Services Managers | 70                                  | Less than 5 years                                   | 19%                                             |
| 17-2071 | Electrical Engineers             | 61                                  | None                                                | 34%                                             |
| 19-1029 | Biological Scientists, All Other | 52                                  | None                                                | 55%                                             |
| 13-1071 | Human Resources Specialists      | 50                                  | None                                                | 20%                                             |
| 19-2021 | Atmospheric and Space Scientists | 36                                  | None                                                | 35%                                             |
| 13-1081 | Logisticians                     | 26                                  | None                                                | 12%                                             |

<sup>[11]</sup> California State Lands Commission. AB 525 Workforce Development Readiness Plan. Final Report. June 16, 2023. 88-92. Available at: https://www.slc.ca.gov/renewable-energy/workforce-development-readiness-plan/.

U.S. Bureau of Labor Statistics, Education and Training Assignments by Detailed Occupation, last modified September 6, 2023, https://www.bls.gov/emp/tables/education-and-training-by-occupation.html


U.S. Bureau of Labor Statistics, Educational Attainment for Workers 25 Years and Older by Detailed Occupation, last modified September 6, 2023, https://www.bls.gov/emp/tables/educational-attainment.html.





### Professional Labor Demand - Port Development



45% 36% 17%









### Professional Labor Demand - Port Development



#### AB 525 Workforce Readiness

#### Management occupations

45% of professional port development jobs in 2030

■ Construction Managers: 50%

• Top Executives: 31%

#### Business and financial occupations

36% of professional port development jobs in 2030

Project Management Specialists: 50%

• Cost Estimators: 25%

#### Engineering occupations

17% of professional port development jobs in 2030

• Civil Engineers: 57%

- Architects: 12%

### **Professional Occupations in Port Development**

| soc     | Occupation                                    | Number of jobs in 2030 <sup>1</sup> | Experience in<br>Related<br>Occupation <sup>2</sup> | Percent with<br>Advanced<br>Degree <sup>3</sup> |
|---------|-----------------------------------------------|-------------------------------------|-----------------------------------------------------|-------------------------------------------------|
| 11-9021 | Construction Managers                         | 409                                 | None                                                | 7%                                              |
| 13-1082 | Project Management Specialists                | 324                                 | None                                                | 26%                                             |
| 11-1021 | General and Operations Managers               | 240                                 | 5 years or more                                     | 13%                                             |
| 17-2051 | Civil Engineers                               | 175                                 | None                                                | 30%                                             |
| 13-1051 | Cost Estimators                               | 163                                 | None                                                | 6%                                              |
| 13-2011 | Accountants and Auditors                      | 72                                  | None                                                | 28%                                             |
| 11-9199 | Managers, All Other                           | 67                                  | Less than 5 years                                   | 21%                                             |
| 13-1199 | Business Operations Specialists,<br>All Other | 47                                  | None                                                | 23%                                             |
| 17-1011 | Architects, Except Landscape and Naval        | 37                                  | None                                                | 46%                                             |
| 17-2071 | Electrical Engineers                          | 33                                  | None                                                | 34%                                             |

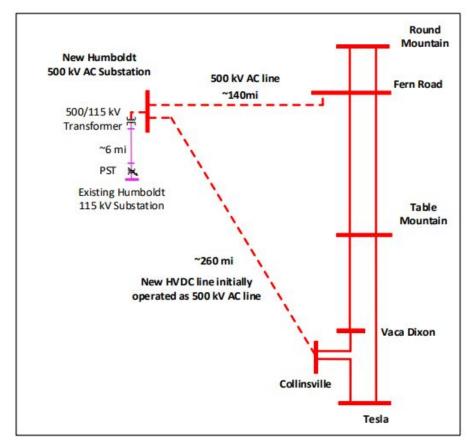
California State Lands Commission. AB 525 Workforce Development Readiness Plan. Final Report. June 16, 2023. 88-92. Available at: https://www.slc.ca.gov/renewable-energy/workforce-development-readiness-plan/.

U.S. Bureau of Labor Statistics, Education and Training Assignments by Detailed Occupation, last modified September 6, 2023, https://www.bls.gov/emp/tables/education-and-training-by-occupation.html

U.S. Bureau of Labor Statistics, Educational Attainment for Workers 25 Years and Older by Detailed Occupation, last modified September 6, 2023, https://www.bls.gov/emp/tables/educational-attainment.html.



### Professional Labor Demand – Transmission Infrastructure




#### Project 1:

- Description: New Humboldt 500 kV Substation + 500 kV Single Circuit Line to Collinsville
- Capital Investment: \$1,165 million

#### **Project 2:**

- Description: Humboldt to Fern Road 500 kV Single Circuit Line
- Capital Investment: \$496 million



California Independent System Operator. *Appendix I: Description and Functional Specifications for Transmission Facilities Eligible for Competitive Solicitation.* 2023–2024 Transmission Plan, 23 May 2024.

https://www.caiso.com/documents/appendix-i-board-approved-2023-2024-transmission-plan.pdf



### Professional Labor Demand – Transmission Infrastructure



- Used IMPLAN to understand the composition of jobs in the Construction of New Power and Communication Structures industry.
- Only about 14% of the workforce would likely require a bachelor's degree
- Currently conducting a more comprehensive economic impact analysis for Transmission Infrastructure; including job estimates during construction, and through the life of the project.

| Occupations                                    | Percent of professional jobs |  |  |
|------------------------------------------------|------------------------------|--|--|
| Management Occupations                         | 49.2%                        |  |  |
| Business and Financial Operations Occupations  | 36.2%                        |  |  |
| Architecture and Engineering Occupations       | 7.6%                         |  |  |
| Life, Physical, and Social Science Occupations | 3.4%                         |  |  |
| Computer and Mathematical Occupations          | 2.6%                         |  |  |
| Legal Occupations                              | 0.8%                         |  |  |
| Sales and Related Occupations                  | 0.3%                         |  |  |



# **Educational Pathways Through CPH**



| Academic Program                     | Average Annual<br>Graduates<br>2013-2023 | Estimated<br>Graduates 2030 | FOSW Jobs 2030 | Port Development<br>Jobs in 2030 |
|--------------------------------------|------------------------------------------|-----------------------------|----------------|----------------------------------|
| Engineering                          | 48                                       | 335                         | 690            | 448                              |
| Business Administration              | 161                                      | 1128                        | 157            | 698                              |
| Communications                       | 41                                       | 288                         | 5              | 410                              |
| Environmental Science and Management | 119                                      | 830                         | 132            | 0                                |
| Biology                              | 197                                      | 1381                        | 68             | 35                               |
| Oceanography                         | 9                                        | 66                          | 84             | 0                                |
| Sociology                            | 73                                       | 510                         | 58             | 24                               |
| Computer Science                     | 31                                       | 214                         | 16             | 42                               |
| Geography                            | 21                                       | 148                         | 36             | 15                               |
| Political Science                    | 28                                       | 196                         | 8              | 39                               |
| Economics                            | 15                                       | 102                         | 0              | 47                               |
| Journalism and Mass Communication    | 30                                       | 209                         | 0              | 39                               |
| Mathematics                          | 19                                       | 130                         | 16             | 20                               |
| Geology                              | 22                                       | 153                         | 32             | 0                                |
| Wildlife                             | 92                                       | 646                         | 16             | 8                                |
| Anthropology                         | 35                                       | 244                         | 20             | 0                                |
| Fisheries Biology                    | 19                                       | 132                         | 0              | 8                                |



## **Educational Pathways Through CPH**



**Engineering programs** support ~1,338 jobs (~30% of FOSW and port development professional labor), especially in:

- Mechanical (45%), Civil (26%), and Environmental (12%) engineering.
- Strong potential for growth through new undergrad/grad programs.
- · ABET accreditation enhances graduate competitiveness.

**Science programs** (e.g., Marine Biology, Oceanography, Environmental Science) expected to produce 4,000+ graduates by 2030

- Align well with needs for environmental monitoring, surveying, and research.
- Most science jobs tied to FOSW, not port development—possibly undercounted.

Business/Admin programs support roles mostly in port development (~87%)

- Key occupations: Project Managers, Cost Estimators, Accountants, Logisticians.
- Lack of AACSB accreditation may limit competitiveness.

Graduate degrees may be increasingly necessary, despite BLS estimates

· Offshore wind industry trends suggest higher qualifications preferred.

New Engineering & Technology



https://www.humboldt.edu/facilities-management/capital-projects/engineering-technology-building



## Next Steps and Recommendations



#### **Recommendations:**

- Align Academic Programs with Industry Needs Identify curriculum gaps and align courses with FOSW careers.
- Strengthen Industry Partnerships Collaborate with industry to provide experiential learning opportunities.
- Improve Workforce Data Transparency Advocate for clearer modeling assumptions and refined job estimates.

#### **Next Steps:**

- Conduct Economic Impact Assessments of FOSW onshore transmission infrastructure.
- Engage Industry to Define Job Roles and refine workforce projections.
- Expand Academic Offerings to support specialized FOSW workforce development.

# Long Beach Pier Wind Project Concept



https://polb.com/port-info/news-and-press/port-of-long-beach-releases-pier-wind-project-concept-05-09-2023/